skip to main content


Search for: All records

Creators/Authors contains: "Bowsher, Julia H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Body size influences performance in many bee species and may be influenced by nesting cavity diameter in cavity-nesting bees. Megachile rotundata (Fabricius) (Hymenoptera: Megachilidae) is a commercially-managed, solitary cavity-nesting bee. In M. rotundata body size has low heritability and is strongly influenced by the size of the larval provision and the diameter of the nesting cavity. Commercial nesting boxes have cavities that are 7 mm in diameter. Our goal was to examine the effects that nesting cavity diameter has on M. rotundata body size and performance by manipulating the size of cavities that are available for nesting. We provided bees with nesting cavities that ranged in size from 4 to 9 millimeters in 1 mm increments. To assess body size we measured mass and intertegular span. To assess performance we measured wing area, wing loading, sex, overwintering survival, pollen ball occurrence, and diapause status in the offspring. We also examined the reproductive output from the different nest cavity diameters. We found that the 8 mm cavities reared bees with the largest mass, and 4 mm cavities reared bees with the smallest mass. We determined that the 7 mm nesting cavity is optimal for offspring yield, the 8 mm nesting cavity is optimal for performance, and the 5 mm nesting cavity may be optimal for conservation efforts of other cavity-nesting bees. Based on the desired outcome of the bee managers, nest sizes differing from the standard may provide an advantage.

     
    more » « less
  2. Abstract

    Megachile rotundata (F.) is an important pollinator of alfalfa in the United States. Enhancing landscapes with wildflowers is a primary strategy for conserving pollinators and may improve the sustainability of M. rotundata. Changing cold storage temperatures from a traditionally static thermal regime (STR) to a fluctuating thermal regime (FTR) improves overwintering success and extends M. rotundata’s shelf life and pollination window. Whether floral resources enhance overwintering survival and/or interact with a thermal regime are unknown. We tested the combined effects of enhancing alfalfa fields with wildflowers and thermal regime on survival and macronutrient stores under extended cold storage (i.e., beyond one season). Megachile rotundata adults were released in alfalfa plots with and without wildflower strips. Completed nests were harvested in September and stored in STR. After a year, cells were randomly assigned to remain in STR for 6 months or in FTR for a year of extended cold storage; emergence rates were observed monthly. Macronutrient levels of emerged females were assessed. FTR improved M. rotundata survival but there was no measurable effect of wildflower strips on overwintering success or nutrient stores. Timing of nest establishment emerged as a key factor: offspring produced late in the season had lower winter survival and dry body mass. Sugars and glycogen stores increased under FTR but not STR. Trehalose levels were similar across treatments. Total lipid stores depleted faster under FTR. While wildflowers did not improve M. rotundata survival, our findings provide mechanistic insight into benefits and potential costs of FTR for this important pollinator.

     
    more » « less
  3. null (Ed.)
  4. Benoit, Joshua B. (Ed.)
    Megachile rotundata exhibits a facultative prepupal diapause but the cues regulating diapause initiation are not well understood. Possible cues include daylength and temperature. Megachile rotundata females experience changing daylengths over the nesting season that may influence diapause incidence in their offspring through a maternal effect. Juvenile M . rotundata spend their developmental period confined in a nesting cavity, potentially subjected to stressful temperatures that may affect diapause incidence and survival. To estimate the impact of daylength and nest cavity temperature on offspring diapause, we designed a 3D printed box with iButtons that measured nest cavity temperature. We observed nest building throughout the season, monitored nest cavity temperature, and followed offspring through development to measure diapause incidence and mortality. We found that daylength was a cue for diapause, and nest cavity temperature did not influence diapause incidence. Eggs laid during long days had a lower probability of diapause. Siblings tended to have the same diapause status, explaining a lot of the remaining variance in diapause incidence. Some females established nests that contained both diapausing and nondiapausing individuals, which were distributed throughout the nest. Nest cavities reached stressful temperatures, which decreased survival. Mortality was significantly higher in nondiapausing bees and the individuals that were laid first in the nest. In conclusion, we demonstrate a maternal effect for diapause that is mediated by daylength and is independent of nest box temperature. 
    more » « less
  5. O’Donnell, Sean (Ed.)
    Abstract Variation in body size has important implications for physical performance and fitness. For insects, adult size and morphology are determined by larval growth and metamorphosis. Female blue orchard bees, Osmia lignaria, (Say) provision a finite quantity of food to their offspring. In this study, we asked how provision-dependent variation in size changes adult morphology. We performed a diet manipulation in which some larvae were starved in the final instar and some were given unlimited food. We examined the consequences on adult morphology in two ways. First, allometric relationships between major body regions (head, thorax, abdomen) and total body mass were measured to determine relative growth of these structures. Second, morphometrics that are critical for flight (wing area, wing loading, and extra flight power index) were quantified. Head and thorax mass had hyperallometric relationships with body size, indicating these parts become disproportionately large in adults when larvae are given copious provisions. However, abdominal mass and wing area increased hypoallometrically with body size. Thus, large adults had disproportionately lighter abdomens and smaller wing areas than smaller adults. Though both males and females followed these general patterns, allometric patterns were affected by sex. For flight metrics, small adults had reduced wing loading and an increased extra flight power index. These results suggest that diet quantity alters development in ways that affect the morphometric trait relationships in adult O. lignaria and may lead to functional differences in performance. 
    more » « less
  6. Abstract The temperature of the nest influences fitness in cavity-nesting bees. Females may choose nest cavities that mitigate their offspring’s exposure to stressful temperatures. This study aims to understand how cavity temperature impacts the nesting preference of the solitary bee Megachile rotundata (Fabricius) under field conditions. We designed and 3D printed nest boxes that measured the temperatures of 432 cavities. Nest boxes were four-sided with cavity entrances facing northeast, northwest, southeast, and southwest. Nest boxes were placed along an alfalfa field in Fargo, ND and were observed daily for completed nests. Our study found that cavity temperature varied by direction the cavity faced and by the position of the cavity within the nest box. The southwest sides recorded the highest maximum temperatures while the northeast sides recorded the lowest maximum temperatures. Nesting females filled cavities on the north-facing sides faster than cavities on the south-facing sides. The bees preferred to nest in cavities with lower average temperatures during foraging hours, and cavities that faced to the north. The direction the cavity faced was associated with the number of offspring per nest. The southwest-facing cavities had fewer offspring than nests on the northeast side. Our study indicates that the nesting box acts as a microclimate, with temperature varying by position and direction of the cavity. Variation in cavity temperature affected where females chose to nest, but not their reproductive investment. 
    more » « less
  7. Abstract The response of ectotherms to temperature stress is complex, non-linear, and is influenced by life stage and previous thermal exposure. Mortality is higher under constant low temperatures than under a fluctuating thermal regime (FTR) that maintains the same low temperature but adds a brief, daily pulse of increased temperature. Long term exposure to FTR has been shown to increase transcription of genes involved in oxidative stress, immune function, and metabolic pathways, which may aid in recovery from chill injury and oxidative damage. Previous research suggests the transcriptional response that protects against sub-lethal damage occurs rapidly under exposure to fluctuating temperatures. However, existing studies have only examined gene expression after a week or over many months. Here we characterize gene expression during a single temperature cycle under FTR. Development of pupating alfalfa leafcutting bees (Megachile rotundata) was interrupted at the red-eye stage and were transferred to 6°C with a 1-h pulse to 20°C and returned to 6°C. RNA was collected before, during, and after the temperature pulse and compared to pupae maintained at a static 6°C. The warm pulse is sufficient to cause expression of transcripts that repair cell membrane damage, modify membrane composition, produce antifreeze proteins, restore ion homeostasis, and respond to oxidative stress. This pattern of expression indicates that even brief exposure to warm temperatures has significant protective effects on insects exposed to stressful cold temperatures that persist beyond the warm pulse. Megachile rotundata’s sensitivity to temperature fluctuations indicates that short exposures to temperature changes affect development and physiology. Genes associated with developmental patterning are expressed after the warm pulse, suggesting that 1 h at 20°C was enough to resume development in the pupae. The greatest difference in gene expression occurred between pupae collected after the warm pulse and at constant low temperatures. Although both were collected at the same time and temperature, the transcriptional response to one FTR cycle included multiple transcripts previously identified under long-term FTR exposure associated with recovery from chill injury, indicating that the effects of FTR occur rapidly and are persistent. 
    more » « less